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ON THE SYMPLECTIC EIGHTFOLD

ASSOCIATED TO A PFAFFIAN CUBIC FOURFOLD

N. ADDINGTON AND M. LEHN

Abstract. We show that the irreducible holomorphic symplectic eightfold

Z associated to a cubic fourfold Y not containing a plane is deformation-

equivalent to the Hilbert scheme of four points on a K3 surface. We do this by

constructing for a generic Pfaffian cubic Y a birational map Z 99K Hilb4(X),

where X is the K3 surface associated to Y by Beauville and Donagi. We

interpret Z as a moduli space of complexes on X and observe that at some

point of Z, hence on a Zariski open subset, the complex is just the ideal sheaf

of four points.

Introduction

Beauville and Donagi [1] showed that if Y ⊂ P
5 is a smooth cubic hypersurface

then the variety F of lines on Y is an irreducible holomorphic symplectic fourfold.

They did this by showing that for certain special cubics, called Pfaffian cubics, there

is an associated K3 surface X such that F ∼= Hilb2(X). Kuznetsov later observed

that for a general Y , the K3 surface X can be replaced with a “K3 category” A,

and he and Markushevich showed that F is a moduli space of objects in A, which in

some sense explains the symplectic form on F . In more detail, the derived category

D(Y ) = Db(Coh(Y )) admits a semi-orthogonal decomposition

D(Y ) = 〈A,OY (−1),OY ,OY (1)〉,

where A is like the derived category of a K3 surface in that it has the same Serre

functor and Hochschild homology and cohomology, and A ∼= D(X) if Y is Pfaffian

[6]. Given a line ℓ ⊂ Y , the projection of the ideal sheaf Iℓ into A is a stable sheaf

whose deformation space is naturally identified with that of ℓ [8, §5] .

Lehn et al. [10] associated to each cubic Y not containing a plane an irreducible

holomorphic symplectic eightfold Z, constructed not from lines but from twisted

cubics on Y . They calculated that Z has the same topological Euler number as

Hilb4(K3), but left open the question of whether the two are deformation equivalent.

In this note, using a derived interpretation like that of Kuznetsov and Markushe-

vich, we show that they are.

Theorem — If Y is a Pfaffian cubic fourfold not containing a plane and the

associated K3 surface X does not contain a line then Z is birational to Hilb4(X).
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Corollary — For any cubic fourfold Y not containing a plane, Z is deformation

equivalent to the Hilbert scheme of four points on a K3 surface.

The corollary follows from Huybrechts’ theorem that birational holomorphic sym-

plectic varieties are deformation equivalent [3, Thm. 4.6].

In Section 1 we interpret Z as a moduli space of objects in A, clarifying the

construction of [10]. There, Z was constructed as a contraction of the moduli space

M of generalized twisted cubics on Y ; precisely, there is an embedding j : Y → Z

such that M is a P
2-bundle over the blow-up of Z along j(Y ). Here we show

that two points [C1], [C2] ∈ M lie in the same fiber of M → Z if and only if the

projections of the twisted ideal sheaves IC1
(2) and IC2

(2) into the subcategory A

are the same, and that if [C] lies over j(y) then the projection of IC(2) is the same

as the projection of the skyscraper sheaf Oy, up to a shift.

In Section 2 we recall Beauville and Donagi’s construction of a K3 surface X

associated to a Pfaffian cubic Y , and give an explicit geometric description of

Kuznetsov’s equivalence A ∼= D(X): it is induced by the ideal sheaf of a cer-

tain correspondence Γ ⊂ X × Y that is generically 4-to-1 over Y . This is implicit

in [6].

In Section 3 we argue that if Y is Pfaffian then for a general [C] ∈ M , the

projection of IC(2) into A ∼= D(X) is the ideal sheaf of four points in X , again up

to a shift. Rather than proving this directly, we observe that if [C] lies over j(y)

then we can instead pass Oy over to D(X), and for generic y this clearly yields

the ideal sheaf of four points; but the property of being an ideal sheaf is an open

condition. Thus we get a map from a Zariski open subset M0 ⊂ M to Hilb4(X),

and from our work in Section 1 we see that this descends to an embedding of an

open subset Z1 ⊂ Z into Hilb4(X).

As we were finishing this paper we heard talks in Bonn and Lille by two other

parties working on the same problem independently. Lahoz, Macr̀ı, and Stellari

have an approach via ACM bundles as in [9]. Kuznetsov is studying Pfaffian cubics

using the full machinery of his homological projective duality, which may yield a

description of the indeterminacy locus of Z 99K Hilb4(X). The main novelty of our

paper in comparison to these is the semi-continuity trick outlined in the previous

paragraph.
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finished it while the first author was visiting the Hausdorff Research Institute for
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0905923.
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1. Z as a moduli space of objects in A

Let M = Hilbgtc(Y ) be the irreducible component of Hilb3n+1(Y ) containing

twisted cubics, and let u : M → Z be the contraction and j : Y → Z the embedding

that appear in [10]. Recall from [10] that u factors as σ ◦ a, where a : M → Z ′ is

a P
2-bundle and σ : Z ′ → Z is the blow-up of Z along j(Y ). The analysis of the

curves C parametrized by M breaks into two cases, depending on whether C is

arithmetically Cohen-Macaulay (aCM) or non-Cohen-Macaulay (non-CM).

If u([C]) /∈ j(Y ) then C is aCM. The linear hull of C is a P
3, and the ideal sheaf

of C in this P3 has a resolution of the form

(1) 0→ OP3(−3)2 → OP3(−2)3 → IC/P3 → 0.

Let SC = Y ∩ P
3, which is a cubic surface. Any curve C′ corresponding to a point

in the same fiber a−1(a([C])) is contained in the same cubic surface SC . Moreover

there is a 3 × 3 matrix A with entries in H0(SC ,O(1)) such that for all such C′

the ideal sheaf IC′/SC
is generated by the minors of a 3 × 2 matrix A0 consisting

of two independent linear combinations of columns of A. Finally, IC′/SC
admits a

2-periodic resolution

· · ·
A
−−→ OSC

(−5)3
B
−−→ OSC

(−3)⊕3 A
−−→ OSC

(−2)3 −→ IC′/SC
−→ 0

where B is the adjugate matrix of A. In particular, as abstract sheaves, all IC′/SC

for points [C′] in the same a-fiber are isomorphic. The converse holds as well:

for any [C′] ∈ M with IC′/SC′

∼= IC/SC
we have [C′] ∈ a−1(a([C])). To see this,

note that the curve C can be reconstructed from its ideal sheaf by a choice of

homomorphism IC/SC
→ OSC

. From the resolution (1) and the exact sequence

(2) 0→ OP3(−3)→ IC/P3 → IC/SC
→ 0

we find that Hom(IC/SC
,OSC

) = H2(IC/SC
(−1))∗ is 3-dimensional, which gives a

P
2-family of distinct curves with isomorphic IC/SC

. But the fiber a−1(a([C])) is

already a P
2-family of such curves, so there are no others.

If on the other hand u([C]) = j(y) then C is non-CM, and consists of a singular

plane cubic curve C0 ⊂ SC together with an embedded point at y. In particular

C has only one embedded point, so if two curves C1 and C2 both have embedded

points at y then u([C1]) = u([C2]) = j(y).

This concludes our recollections from [10].

Let Lk : D(Y )→ 〈OY (k)〉
⊥ ⊂ D(Y ) be the left mutation past OY (k):

Lk(B) = cone
(

OY (k)⊗ RHom(OY (k), B)→ B
)

.

Then the composition pr := L−1 ◦L0 ◦L1 is the projection into A discussed in the

introduction. It annihilates OY (−1), OY , and OY (1), and acts as the identity on

A. It is left adjoint to the inclusion A →֒ D(Y ).
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Lemma 1 —

(a) For all [C] ∈M one has pr(IC/Y (2)) ∼= pr(IC/SC
(2)).

(b) If u([C]) = j(y) then pr(IC/Y (2)) ∼= pr(Oy)[−1].

Proof. (a) From the Koszul resolution

0→ OY → OY (1)
2 → ISC/Y (2)→ 0

we see that that pr(ISC/Y (2)) = 0, so from the exact sequence

0→ ISC/Y (2)→ IC/Y (2)→ IC/SC
(2)→ 0

we see that pr(IC/Y (2)) ∼= pr(IC/SC
(2)).

(b) Let C0 be the singular plane cubic recalled above. From the Koszul resolution

0→ OY (−1)→ OY
3 → OY (1)

3 → IC0/Y (2)→ 0

we see that pr(IC0/Y (2)) = 0, so from the exact sequence

0→ IC/Y (2)→ IC0/Y (2)→ Oy → 0

we see that pr(IC/Y (2)) ∼= pr(Oy)[−1]. �

Proposition 2 — Two points [C1], [C2] ∈ M lie in the same fiber of u : M → Z

if and only if pr(IC1
(2)) ∼= pr(IC2

(2)).

Proof. If u([C1]) = u([C2]) /∈ j(Y ) then a([C1]) = a([C2]), so IC1/SC1

∼= IC2/SC2
,

so pr(IC1
(2)) ∼= pr(IC2

(2)) by Lemma 1(a). If u([C1]) = u([C2]) = j(y) then

pr(IC1
(2)) ∼= pr(IC2

(2)) by Lemma 1(b).

Conversely, suppose that pr(IC1
(2)) ∼= pr(IC2

(2)). We consider three cases.

Case 1: C1 and C2 are both aCM. It is enough to show that pr(IC/SC
(2))

determines IC/SC
(2) for every aCM curve C. From (1) and (2) we find that

H∗(IC/SC
) = H∗(IC/SC

(1)) = 0, so IC/SC
(2) ∈ 〈OY (1),OY (2)〉

⊥. Moreover we

find that IC/SC
(2) is generated by global sections, so FC := L0(IC/SC

(2))[−1] is a

sheaf and fits into an exact sequence

0→ FC → O
3
Y → IC/SC

(2)→ 0.

As IC/SC
(2) has codimension 2, dualizing this sequence gives FC

∨ ∼= (O3
Y )

∨, and

dualizing again shows that the inclusion of FC in O3
X is isomorphic to the natural

map from FC to its double dual. Hence IC/SC
(2) can be recovered from FC as its

cotorsion: IC/SC
(2) ∼= FC

∨∨/FC . Now FC is contained in 〈OY ,OY (1),OY (2)〉
⊥.

Since the canonical bundle ωY is OY (−3), the left mutation L−1 and the corre-

sponding right mutation R−1 provide inverse equivalences

〈OY ,OY (1),OY (2)〉
⊥

L−1

// 〈OY (−1),OY ,OY (1)〉
⊥

R−1

oo .

Hence pr(IC/S(2)) = L−1(FC) determines FC and hence IC/S(2).
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Case 2: C1 is aCM and C2 is non-CM with embedded point y2. Since pr is left

adjoint to the inclusion A →֒ D(Y ), we have

Hom
(

pr(IC1
(2)), pr(IC2

(2))
)

= Hom
(

pr(IC1/SC1
(2)), pr(Oy2

)[−1]
)

= Hom
(

IC1/SC1
(2), pr(Oy2

)[−1]
)

.

Applying pr to Oy2
[−1] we get a truncated Koszul complex

(3) OY (−1)
10 → OY

5 → OY (1)→ Oy2
,

where the underlined term is in degree zero. Applying Hom(IC1/SC1
(2), −) to the

complex (3) we find that the E1 page of the Grothendieck spectral sequence is

0 → ∗ → ∗ → ∗

0 → ∗ → ∗ → ∗

0 → ∗ → ∗ → ∗ q = 2

0 → 0 → 0 → ∗ q = 1

0 → 0 → 0 → ∗ q = 0

p = −2 p = −1 p = 0 p = 1

where in the left-hand column we have used the fact that

Extq
(

IC1/SC1
(2), OY (−1)

)

= H4−q
(

IC1/SC1

)

∨ = 0

and the other zeroes come for dimension reasons. From this it follows that

Hom(IC1/SC1
(2), pr(Oy2

)[−1]) = 0, so pr(IC1
(2)) 6∼= pr(IC2

(2)).

Case 3: C1 and C2 are non-CM with embedded points y1 and y2. We have

Hom
(

pr(IC1
(2)), pr(IC1

(2))
)

= Hom
(

pr(Oy1
), pr(Oy2

)
)

= Hom
(

Oy1
, pr(Oy2

)
)

.

By a similar Grothendieck spectral sequence calculation, this is Hom(Oy1
,Oy2

).

Thus if pr(IC1
(2)) ∼= pr(IC1

(2)) then this Hom does not vanish, so y1 = y2, so

u([C1]) = u([C2]). �

Not only are the points of Z in bijection with the objects pr(IC(2)), but in

fact the tangent spaces of Z can be identified with the deformation spaces of the

corresponding objects, so Z truly deserves to be called a moduli space of objects in

A. But we will not prove this, as we do not need it for our main theorem.

Of course one would like to be able to define Z directly as the component of the

moduli space of stable objects in A containing pr(Oy)[−1], thus avoiding the hard

work of [10]. At present, though, no one knows how to produce any kind of stability

condition on A when Y is general. So while the derived perspective clarifies the

construction of [10], it cannot yet replace it.
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2. Pfaffian cubics

Let V be a 6-dimensional complex vector space and L ⊂ Λ2V ∗ a generic 6-

dimensional subspace of skew-symmetric forms on V . To these data Beauville and

Donagi associate a K3 surface

X =
{

[P ] ∈ Grass(2, V )
∣

∣

∣
ϕ|P = 0 for all ϕ ∈ L

}

and a Pfaffian cubic fourfold

Y =
{

[ϕ] ∈ P(L∗)
∣

∣

∣
rk(ϕ) = 4

}

=
{

[ϕ] ∈ P(L∗)
∣

∣

∣
pf(ϕ) = 0

}

.

(Here we use Grothendieck’s convention that P(L∗) is the space of 1-dimensional

quotients of L∗, hence of 1-dimensional subspaces of L.) For a generic choice of L,

both X and Y are smooth, and X does not contain a line nor Y a plane. Under

this genericity assumption, Y cannot contain a quadric surface either, for the linear

hull of any quadric surface Q ⊂ Y would cut out a residual plane.

In this section we study the correspondence

Γ =
{

([P ], [ϕ]) ∈ X × Y
∣

∣

∣
P ∩ rad(ϕ) 6= 0

}

and show that its ideal sheaf induces an equivalence between A and D(X).

The correspondence Γ carries a natural scheme structure defined as follows:

Let 0 → P → VX → Q → 0 denote the tautological bundle sequence on X ,

and let A : VP(L∗) → VP(L∗)
∨ ⊗O(1) denote the tautological skew-symmetric form

parametrized by P(L∗). By construction, the restriction of Aϕ to any P , [P ] ∈ X ,

vanishes, so A induces a homomorphism A′ : P ⊠ O → Q∨
⊠ O(1) on X × P(L∗).

Then Γ ⊂ X ×P(L∗) is the subscheme defined by the vanishing of the 2× 2-minors

of A′. There are natural morphisms X
pX
←−−− Γ

pY
−−→ Y .

For any [ϕ] ∈ Y , the radical rad(ϕ) is a plane in V which, however, can never lie

in X : In fact, up to a scalar factor, the differential Dϕ pf maps a tangent vector ψ

to its value on Λ2 rad(ϕ). As Y is smooth, the intersection of P(L∗) and the Pfaffian

hypersurface at [ϕ] is transversal. Hence not all ϕ′ ∈ L can vanish on rad(ϕ).

Thus the fiber ΓP := p−1
X ([P ]) admits a well-defined map π : ΓP → P(P ), ϕ 7→

P ∩ rad(ϕ). The fiber π−1([ℓ]) over a line ℓ ⊂ P is a linear subspace in Y . But by

assumption, Y does not contain a plane. Hence this fiber is at most 1-dimensional,

and in turn dim(ΓP ) ≤ 2 and dim(Γ) ≤ 4. As Γ is a determinantal variety, there

is the a priori bound codim(Γ/X × P(L∗)) ≤ 3. We conclude that Γ has the

expected dimension 4, and that the Eagon-Northcott complex associated to A′t is

a locally free resolution of the ideal sheaf IΓ/X×P(L∗), and Γ is Cohen–Macaulay

(cf. [2, Thm. A2.10 and Cor. A2.13]). Restricting the complex to [P ] × P(L∗), we

obtain a locally free resolution

(4) 0→ OP(L∗)(−4)
3 → OP(L∗)(−3)

8 → OP(L∗)(−2)
6 → OP(L∗) → OΓP

→ 0.
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In particular, the Hilbert polynomial of ΓP is constant as a function of P , and

pX : Γ → X is flat. Moreover, each ΓP is a 2-dimensional Cohen-Macaulay sub-

scheme of Y of degree 4. Since Y does not contain planes or quadric surfaces, ΓP

is generically reduced and hence reduced.

Let Φ: D(Y )→ D(X) be the Fourier-Mukai functor induced by the ideal sheaf

IΓ = IΓ/X×Y , and let Ψ: D(X) → D(Y ) be its right adjoint. From the resolution

(4) and the exact sequence

0→ OP(L∗)(−3)→ IΓP /P(L∗) → IΓP /Y → 0

we find that Φ(OY (k)) = 0 for k = −1, 0, 1. This implies that Ψ(D(X)) ⊂ A.

Proposition 3 — Ψ: D(X)→ A is an equivalence.

Proof. Step 1. For distinct points [P ], [Q] ∈ X , the corresponding subvarieties ΓP ,

ΓQ ⊂ Y are distinct: We have P ∩Q = 0; otherwise X would contain a line. Hence

if ΓP = ΓQ, the mappings [ϕ] 7→ rad(ϕ) ∩ P and [ϕ] 7→ rad(ϕ) ∩ Q would define

two different rulings on ΓP = ΓQ, which is impossible.

Step 2. The functor Ψ is fully faithful: By the criterion of Bondal and Orlov [4,

Prop. 7.1], it is enough to show that

(5) dimExtiY (Ψ(O[P ]),Ψ(O[Q])) = dimExtiX(O[P ],O[Q]).

The kernel inducing Ψ is I∨⊗OY (−3)[4] (cf. [4, Prop. 5.9]). Since Γ is flat over X

we have Ψ(O[P ]) = I∨ΓP /Y (−3)[4], so we can rewrite (5) as

dimExtiY (IΓQ/Y , IΓP /Y ) = dimExtiX(O[P ],O[Q]).

This is trivial for i < 0 and obviously true for i = 0, since ΓP and ΓQ have

codimension 2 in Y and are distinct if P 6= Q. Kuznetsov [7, Cor. 4.4] has shown

that the Serre functor of A is given by shifting by 2. Thus Serre duality gives the

claim for i ≥ 2. Finally, Hirzebruch-Riemann-Roch gives χ(IΓQ/Y , IΓP /Y ) = 0, so

the claim also holds in the remaining case i = 1.

Step 3. Since Ψ is fully faithful and the Serre functor is given by shifting by 2

on both D(X) and A, it is enough to show that A is indecomposable [4, Cor. 1.56].

This follows from the fact that HH0(A) = HH−2(A) is 1-dimensional [5], or alter-

natively from the (possibly different) equivalence A ∼= D(X) of [6]. �

Lemma 4 — The projection pY : Γ→ Y is generically finite of degree 4.

Proof. Fix [ϕ] ∈ Y . Then the fiber Γϕ := p−1
Y ([ϕ]) is a linear section of the Schubert

cycle

Σϕ :=
{

[Q] ∈ Grass(2, V )
∣

∣

∣
Q ∩ rad(ϕ) 6= 0

}

,

which is 5-dimensional. Choose a basis ϕ1, . . . , ϕ6 of L with ϕ1 = ϕ. This deter-

mines 6 hyperplane sections ϕ⊥
1 , . . . , ϕ

⊥
6 of Grass(2, V ), and Γϕ = Σϕ∩ϕ

⊥
1 ∩· · ·∩ϕ

⊥
6 .

But Σϕ is already contained in ϕ⊥
1 = ϕ⊥, so Γϕ is the intersection of Σϕ with 5
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hyperplanes, hence is non-empty. Since dimΓ = dimY , we see that pY is generi-

cally finite. With a bit of Schubert calculus we find that deg Σϕ = 4, so when Γϕ

has the expected dimension it is a 0-dimensional scheme of length 4. �

In fact one can show that if X contains no (−2)-curves then pY : Γ→ Y is flat,

but we do not need this.

3. The birational isomorphism

Now we assemble the results from the previous two sections to prove the theorem

stated in the introduction. As in the previous section, let Y be a Pfaffian cubic and

X the associated K3 surface, and assume that X does not contain a line nor Y a

plane. All our pullbacks, pushforwards, etc. are implicitly derived.

Let C ⊂M × Y be the universal curve, and let T be the convolution

T := IΓ ◦ IC(2) = πM×X∗

(

π∗
X×Y IΓ ⊗ π

∗
M×Y IC(2)

)

∈ D(M ×X).

For each [C] ∈ M , let i[C] : X → M ×X be the inclusion x 7→ ([C], x). Because C

is flat over M , the derived restriction i∗[C]T is isomorphic to Φ(IC(2)).

By Lemma 4, there is an open subset Y0 ⊂ Y such that Φ(Oy) is the ideal sheaf

Iξ(y)/X of a 0-dimensional subscheme ξ(y) ⊂ X of length 4 for all y ∈ Y0. Since Φ

annihilates OY (−1), OY , and OY (1), we have Φ ◦ pr = Φ, so by Lemma 1(b), the

sheavesHk(i∗[C]T ) vanish for k 6= 1 whenever u([C]) ∈ j(Y0). By semicontinuity, the

same then holds for all [C] in an open neighborhood M0 of u−1(j(Y0)). Hence by

[4, Lem. 3.31], the sheaf E := H1(T |M0×X) is flat over M0, and T |M0×X
∼= E[−1].

Over u−1(j(Y0)) ⊂ M0 the family E parametrizes ideal sheaves on X , and since

ideal sheaves are stable, we conclude after shrinking M0 if necessary that E is an

M0-flat family of ideal sheaves on X .

Let t′ : M0 → Hilb4(X) be the classifying morphism induced by the family E.

Proposition 2 implies that t′ is constant on the fibers of u. As u is proper, there is

an open neighborhood Z0 of j(Y0) in Z such that u−1(Z0) ⊂ M0. The restriction

T ′
u−1(Z0)

now descends to give a morphism t : Z0 → Hilb4(X).

It follows from Proposition 3 that Ψ ◦ Φ = pr, so by Proposition 2 again we

see that t is injective. The differential of t must have full rank at some point —

otherwise t(Z0) would be a proper subscheme of Hilb4(X), contradicting injectivity

— and hence it must have full rank on an open subset of Z1 of Z0. Now t|Z1
is

injective and étale, hence is an open immersion. Thus Z is birational to Hilb4(X).

References

[1] A. Beauville and R. Donagi. La variété des droites d’une hypersurface cubique de
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